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ABSTRACT

The average predictability time (APT) method is used to identify the most predictable components of

decadal sea surface temperature (SST) variations over the SouthernOcean (SO) in a 4000-yr unforced control

run of theGFDLCM2.1model. Themost predictable component shows significant predictive skill for periods

as long as 20 years. The physical pattern of this variability has a uniform sign of SST anomalies over the SO,

with maximum values over the Amundsen–Bellingshausen–Weddell Seas. Spectral analysis of the associated

APT time series shows a broad peak on time scales of 70–120 years. This most predictable pattern is closely

related to the mature phase of a mode of internal variability in the SO that is associated with fluctuations of

deep ocean convection. The second most predictable component of SO SST is characterized by a dipole

structure, with SST anomalies of one sign over the Weddell Sea and SST anomalies of the opposite sign over

the Amundsen–Bellingshausen Seas. This component has significant predictive skill for periods as long as 6

years. This dipole mode is associated with a transition between phases of the dominant pattern of SO internal

variability. The long time scales associated with variations in SO deep convection provide the source of the

predictive skill of SO SST on decadal scales. These analyses suggest that if the SO deep convection in a nu-

merical forecast model could be adequately initialized, the future evolution of SO SST and its associated

climate impacts are potentially predictable.

1. Introduction

Over the past decade, the observed sea surface tem-

perature (SST) in the Southern Ocean (SO) did not in-

crease (e.g., Latif et al. 2013; Zhang et al. 2017b) but

instead exhibited cooling anomalies. The associated

Antarctic sea ice extent showed an expansion, with a

record maximum occurring in September 2012 (e.g.,

Cavalieri and Parkinson 2008; Comiso and Nishio 2008).

In themeantime, the SouthernOcean subsurface (below

500m) warmed considerably (Purkey and Johnson 2010,

2012). The slowdown in the rate of SO warming cannot

be attributed to a decrease in greenhouse gas emission

from human activity. Climate models forced by ob-

served temporally varying radiative forcing do not re-

produce the observed cooling around the Antarctic, but

instead simulate a slow but steady warming and Ant-

arctic sea ice loss (Purich et al. 2016). It is therefore

likely that internal variability is contributing to the de-

clining SSTs in the SO (Cane 2010; Zunz et al. 2013;

Polvani and Smith 2013). However, the extent to which

such SO internal climate variability can be simulated

and hence predicted on decadal time scales is still

not known.

Decadal predictions are in high demand by decision

makers who help plan infrastructure investments and

resource rearrangements (Cane 2010). The scientific

basis of decadal prediction should be built firmly beforeCorresponding author: Liping Zhang, liping.zhang@noaa.gov
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this demand can be met. A first step is to estimate

whether there is a potentially predictable component on

decadal scales. Decadal predictability is commonly es-

timated by two approaches: prognostic and diagnostic

approaches (e.g., Pohlmann et al. 2004). In the prog-

nostic approach, decadal predictability is evaluated

based on an atmosphere–ocean fully coupled model

(AOGCM) initialized by identical oceanic and per-

turbed atmospheric conditions. The spread within the

ensemble is interpreted as an estimate of predictability.

Previous studies further extended this method to de-

cadal hindcasts/forecasts that are initialized with ob-

servations. Pioneering studies using prognostic method

primarily focused on the North Atlantic and North Pa-

cific Oceans where the observations are more numerous

and can better be used for model initialization

(Keenlyside et al. 2008; Smith et al. 2007; Robson et al.

2012; Yeager et al. 2012; Yang et al. 2013; Msadek et al.

2014; Mochizuki et al. 2010; Meehl and Teng 2012).

These model results suggested that the observation-

based initial conditions improve skill in the North At-

lantic and, to a lesser extent, the North Pacific.

Compared to prognostic approaches, the diagnostic

approaches are easier to carry out since they do not

require extensive data for initializing prediction models.

Diagnostic predictability can be evaluated by various

statistical methods, including examining eigenmodes

of a linear inverse model (LIM) (Newman 2007), ex-

amining the growth of optimal perturbations (Zanna

et al. 2012), and investigating the potential predictability

variance fraction (ppvf) (Boer 2004; 2011). These sta-

tistical tools can identify where and on what time scale

the variables have potential high predictability. Using

multimodel ensemble data participating in the Coupled

Model Intercomparison Project (CMIP), Boer (2004)

found that the largest potential predictability on decadal

scales is predominately over the high-latitude oceans,

particularly in the SO and North Atlantic. These di-

agnostic approaches might serve as a useful benchmark

for decadal predictions that are based on observation-

initialized numerical models.

Given the dearth of long-term observations over the

SO, we choose to use a diagnostic method to investigate

the potential predictability of decadal-scale SO SST

variations by taking advantage of a long control in-

tegration of the GFDL CM2.1 model. The method we

used here is called average predictability time (APT), as

proposed by DelSole and Tippett (2009a,b). The APT

method finds the most predictable patterns. One advan-

tage of this technique is that it can capture predictable

features that contribute little to total variance growth or

cannot be expressed as oscillatory modes (DelSole et al.

2013). The main goal of the current study is to examine

the leading predictable components of SO SST and the

associated climate impacts within a long control simula-

tion of the GFDL CM2.1 model. The physical processes

contributing to this predictability are also investigated.

We hope our diagnostic analysis can provide a useful

reference point for future SO decadal forecasts using

observation-initialized numerical models.

2. Models and methods

a. Coupled model

The long-time integrated control run we used in the

present paper comes from the Geophysical Fluid Dy-

namics Laboratory (GFDL) Coupled Model version 2.1

(CM2.1; Delworth et al. 2006). The CM2.1 model has an

atmospheric horizontal resolution of 28 3 28, with 24 levels
in the vertical. The ocean and icemodels have a horizontal

resolution of 18 in the extratropics, with meridional grid

linearly decreasing to 1/38 near the equator. The ocean

model has 50 levels in the vertical, with 22 evenly spaced

levels over the top 220m. A 4000-yr control simulation is

conducted with atmospheric constituents and external

forcing held constant at 1860 conditions. We perform

analyses using the last 3000 years of the simulation (1001–

4000yr) to avoid initial model drift. All data are linearly

detrended before analysis. Characteristics of the model’s

Antarctic bottom water and its relationship with the

Weddell Gyre have previously been described (e.g.,

Zhang and Delworth 2016). The impact of multidecadal

Atlantic meridional overturning circulation (AMOC)

variations on the SO using this model was also described

in Zhang et al. (2017b). The realism of the model char-

acteristics as described in these previous studies provides

some level of confidence that this model is an appropriate

tool for studies of the model predictability of SO.

b. Methods

We first use the potential predictability variance

fraction (Boer 2004; Boer and Lambert 2008) to give

general information about the high predictability re-

gions. Boer (2004) suggested that the total climate var-

iability (s2) can be decomposed into the slow time scale

‘‘potentially predictable’’ component (s2
L) and un-

predictable climate noise (s2
«). The ppvf is therefore

defined as a fraction of long time scale (or low fre-

quency) variability with respect to the total variability

(ppvf5s2
L/s

2). The term s2
L is the variance of m-yr

mean SST, where m can be selected as any integer

number. The high ppvf regions identify those areas in

which long time scale variability stands out clearly from

short time scale variability, and thus variability in these

regions may be at least potentially predictable.
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We then use the APT method to derive leading pre-

dictable components over these high ppvf regions. A

standard measure of predictability (DelSole and Tippett

2009b) is defined as

P(t)5
s2
‘ 2s2

t

s2
‘

, (1)

where s2
‘ is climatological variance and s2

t is the en-

semble forecast variance at lead time t. This measure is

close to one for a perfect forecast and close to zero when

the ensemble forecast spread approaches the climatological

spread.

The APT is defined as the integral of predictability

over all lead times:

APT5 2 �
‘

t51

�
s2
‘ 2s2

t

s2
‘

�
. (2)

It is an integral measure of predictability and thus is

independent of lead time. TomaximizeAPT, we seek an

inner product qTx, where q is a projection vector, x is the

state vector, and superscript T denotes the transpose

operation. The component qTx has respective forecast

and climatological variances:

s2
t 5 qT�

t

q and s2
‘ 5 qT�

‘
q . (3)

Substituting (3) into (2) generates

APT5 2 �
‘

t51

2
664
qT �

‘
2 �

t

� �
q

qT�
‘
q

3
775 . (4)

DelSole and Tippett (2009b) and Jia and DelSole (2011)

pointed out that maximizing APT leads to an eigenvalue

problem:

2 �
‘

t51

�
�
‘

2 �
t

�
q5 l�

‘
q . (5)

Since the control run data we used here only have a

single ensemble member, a linear regression model is

adopted to estimate APT. The regression model is

written as

x̂
t1t

5L
t
x(t)1 �(t) , (6)

where x(t) denotes the predictor at time t, x̂t1t is the

predictand at time t1 t, Lt is the regression co-

efficient at timet, and �(t) is the residual term. The

climatological and forecast matrices thus have the

form of

�
‘

5C
0

and �
t

5C
0
2C

t
C21

0 CT
t , (7)

where Ct is the time-lagged covariance matrix and C0 is

the climatological variance. Substituting (7) into the

eigenvalue problem (5) gives

�
2 �

‘

t51

C
t
C21

0 CT
t

�
q5 lC

0
q . (8)

The left term in (8) represents the integration of signal

covariance, while the right term represents the total

climatological covariance in which l and q denote the

eigenvalue and projection vector, respectively.

When we apply this method to our control simulation,

both the predictors and predictands are projected on the

leading 30 principal components (PCs). The resulting

3000-yr length PCs are then split in half, as also seen in Jia

and DelSole (2011). The first 1500 years of data from the

control run, called training data, are used to maximize

APT in Eq. (8), and the second 1500 years are kept for

verification. As suggested by DelSole and Tippett

(2009b), we use the squared multiple correlation R2
t to

estimate the potential predictability;R2
t can represent the

amount of variation in the predictand that is accounted

for by the variation in the predictors and has a form of

R2
t 5

qTC
t
C21

0 CT
t q

qTC
0
q

. (9)

The term q is calculated from the training data, while the

covariance termsCt andC0 are obtained fromverification

data. In general, the slower the decrease of R2
t with lead

time, the larger the potential predictability. The statistical

significance of APT is examined by Monte Carlo experi-

ments. We generate two independent random matrices

that have zero mean and unit variance and apply them to

Eq. (8) toproduce an ordered sequence of optimizedAPT

values. This procedure is then repeated 100 times and the

95% eigenvalue from (8) was selected. If the APT value

computed from training data exceeds the 95% value from

the Monte Carlo experiments, the null hypothesis (white

noise, unpredictable) will be rejected and the APT value

from training data is significant at a 5% significance level.

3. Potential predictability over the Southern Ocean

a. High predictability regions

Figure 1 shows the ppvf of 5-yr, 11-yr, and 25-yr mean

SST over the global oceans in the CM2.1 model. In

agreement with previous studies (e.g., Boer 2004; Boer

and Lambert 2008), high-latitude regions exhibit rela-

tively higher potential predictability than the middle
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and low latitudes. This contrast becomes more obvious

when the averaging scale increases from 5 to 11 years (cf.

Figs. 1a and 1b). The potential predictability of 11-yr

mean SST is primarily concentrated in the North At-

lantic, North Pacific, and SO, with comparable magni-

tudes in both hemispheres (Fig. 1b). When we consider

the 25-yr mean SST, the SO potential predictability is

even higher than the North Atlantic and North Pacific

Oceans (Fig. 1c). The large values of ppvf over the SO in

GFDLmodel indicate that the long time scale variability

over the SO is very pronounced.

b. APT analysis of SO SST

We identify the leading predictable components of SO

SST using standard APT analysis. The analyzed area

consists of all ocean grid points south of 358S. Note that

FIG. 1. Spatial patterns of potential predictability variance fraction (ppvf) for (a) 5-yr, (b) 11-yr,

and (c) 25-yr mean SST in the GFDL CM2.1 control run.
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the results are not sensitive to the northern boundary

choices, as long as the latitude is within the Southern

Hemisphere (not shown). The leading two components

have significant APT values at 5% significance level.

The SST spatial pattern associated with the most pre-

dictable component (APT1) has loadings of the same

sign over the SO, with maximum anomalies over the

Amundsen–Bellingshausen–Weddell Seas (Fig. 2a). The

APT value for this mode is 20.6 years. The corre-

sponding time series of APT1 shows prominent multi-

decadal fluctuations (Fig. 2b), with a broad spectral peak

around 70–120 years (Fig. 2c). The squared multiple

correlationR2 of the leading predictable component as a

function of time lag derived from independent control

run is further shown in Fig. 2d. The R2 above the 95%

confidence level denotes significant predictability. This

FIG. 2. The leading predictable component (APT1) of Southern Ocean (SO) SST in GFDL CM2.1 model.

(a) Spatial pattern (8C). (b) Normalized time series. (c) Power spectrum of time series (black line). The blue line

denotes the 90% confidence level based on red noise null hypothesis. (d) Squared multiple correlation coefficients

R2. The dashed black line denotes the 95% significance level.
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figure shows that the APT1 mode has potential pre-

dictability up to 20 years. The traditional and damped

persistence forecasts, which assume that the forecast

equals the initial condition and the forecast decays ex-

ponentially in time, respectively, are shown in Fig. 2d as

well. It can be seen that the skill arising from APT

maximization is higher than both persistence forecasts.

The second most predictable component (APT2) of

SO SST is characterized by a dipole structure, with SST

anomalies of one sign over the Weddell Sea and SST

anomalies of the opposite sign in the Amundsen–

Bellingshausen Seas (Fig. 3a). The associated time

series has a pronounced multidecadal oscillation, but is

quite noisy compared to APT1 (Fig. 3b vs Fig. 2b). The

power spectrum of APT2 time series reveals a quasi-70–

120-yr peak (Fig. 3c) that also appears inAPT1 (Fig. 2c).

Figure 3c also shows substantial variances are distrib-

uted in the 2–50-yr frequency bands in the APT2 power

spectrum, in sharp contrast to APT1 (Fig. 2c). This leads

to a relatively small variance fraction in 70–120-yr fre-

quency bands and thus a noisy APT2 time series. TheR2

of this second most predictable component indicates a

potential predictability up to 5 years (Fig. 3d), which is

much shorter than the first predictable mode due to noisy

FIG. 3. As in Fig. 2, but for the second most predictable component (APT2).

6314 JOURNAL OF CL IMATE VOLUME 30



characteristics. The APT2 predictability is only slightly

higher than the persistence forecasts (Fig. 3d), suggesting

that the skill mainly arises from the SST persistence.

The coherent spectrum of APT1 and APT2 time series

shows high coherences over their common peak period

70–120yr (Fig. 4a), suggesting that the leading two pre-

dictable components may have the same ocean origin. To

confirm our hypothesis, we conduct a lead–lag correlation

analysis between these two time series (Fig. 4b). As ex-

pected, the simultaneous correlation is zero due to the

orthogonality of the APT decomposition. Significant

positive (negative) correlations are found when the APT1

leads (lags) APT2 by 10–30 years. These lead and lag

times account for approximately a quarter of the APT1/

APT2 period (70–120yr). These analyses imply that the

two predictable components appear to vary in quadrature.

4. Ocean origin of high decadal predictability of SO
SST

a. Climate fluctuations associated with leading
predictable modes

To understand the physical processes associated with

the leading predictable components, we regress several

important variables onto the APT1 and APT2 time se-

ries, respectively (Figs. 5 and 6). Figure 5a exhibits the

surface net heat flux and mixed layer depth (MLD)

anomalies associated with theAPT1 time series. The SO

experiences broad negative heat flux anomalies that

tend to damp positive surface temperature anomalies.

This implies that the uniform SO SST warming in APT1

originates from the ocean dynamics, instead of atmo-

sphere forcing. The MLD change shown in Fig. 5a

displays a strong positive anomaly over the Weddell

Sea, indicating strong deep convection there. Note that

the long-term mean global meridional overturning cir-

culation (GMOC) has a negative value south of 608S,
which represents an anticlockwise cell that denotes the

strength of Antarctic Bottom water (AABW) formation

as well as deep convection (Fig. 7a). Figure 5b shows

prominent negative GMOC anomalies south of 208S,
suggesting a strengthening and northward extension of

the AABW cell. In the mean state the subsurface is

warmer than the surface in the region of the SO.

Therefore, the spinup of AABW cell drives a

subsurface–surface temperature dipole in the SO, with a

cooling anomaly in the subsurface and a warming

anomaly at the surface (Fig. 5c) that corresponds to a

decrease ofAntarctic sea ice (Fig. 5d). The surfacewind is

characterized by a zonally oriented anticyclone around

408–608S band, which is very likely due to local SST

feedback (Zhang et al. 2017b). The easterly wind anom-

aly around 408S also favors warm SST in the midlatitude

due to anomalous warm southward Ekman transport.

The heat flux and MLD anomalies associated with the

APT2 time series show opposite signs with the APT1 (cf.

Figs. 6a and 5a), suggesting a weakening of deep con-

vection over the Weddell Sea. Accordingly, the GMOC

anomaly shows a spindown of AABW cell (Fig. 6b).

Compared to APT1, theGMOC change is relatively weak

and mainly confined south of 608S (cf. Figs. 5b and 6b).

The associated zonal mean temperature shows a weak

cold surface–warm subsurface dipole structure over the

SO (Fig. 6c). In contrast to the uniform sea ice response in

APT1, the sea ice change associated with APT2 exhibit a

dipole pattern, with sea ice increase in the Weddell Sea

and sea ice decrease over the Amundsen–Bellingshausen

Seas (Fig. 6d). The sea ice anomaly over the Amundsen–

Bellingshausen Seas is not only related to the SST

anomalies but also linked with the surface wind. As

shown in Fig. 6d, there is an anticyclonic wind around

1608–408W over the SO, which corresponds to a north-

west wind anomaly over the Amundsen–Bellingshausen

Seas. The northwest wind favors poleward warm tem-

perature advection and thus a decrease of sea ice there.

The above regression analyses suggest that the leading

two predictable components of SO SST are very likely to

FIG. 4. (a) Coherence of the APT1 and APT2 time series. The

black line denotes the 95% confidence level. (b) Lead–lag correla-

tion between the APT1 and APT2 time series. The positive (nega-

tive) lags means the APT1 leads (lags). The yellow points imposed

on the bars denote the correlation is significant at 95% level.

15 AUGUST 2017 ZHANG ET AL . 6315



be associated with deep convection changes. To test this

hypothesis, we examine the SO deep convection char-

acteristics in the CM2.1 model. As mentioned above, we

use the AABW cell anomaly to represent the SO deep

convection fluctuations. The strength of the AABW cell

each year is defined as the minimum value of the

streamfunction south of 608S (Fig. 7a). Note that a

negative AABW cell anomaly indicates a stronger than

usual overturning cell. The time series of the AABW

cell index (Fig. 7b) has pronounced multidecadal vari-

ability at time scales of approximately 70 to 120 years

(Fig. 7c); this coincides with the broad spectral peaks of

the APT time series (Fig. 7c vs Figs. 2c and 3c). We also

show in Fig. 7d the lead lag correlation between the

AABW cell index and the APT1 time series. It shows a

negative correlation as low as 20.6 when the AABW

leads the APT1 by about 5 years. Since the APT1 and

APT2 time series are in quadrature, significant corre-

lations are also found between the AABW index and

APT2 with some time lags (not shown).

b. Southern Ocean multidecadal variability

To further confirm the close relationship between

the leading predictable components and SO deep

convection, we show in Figs. 8a–e themultidecadal cycle

of AABW cell. The AABW cell cycle is obtained by the

lagged regression of GMOC anomalies upon the

AABW cell index. At a lag of 0 yr, the AABW cell is in

its mature positive phase, with a maximum increase

south of 608S and a northward extension to 408S
(Fig. 8a). As we move forward from lag 0, the GMOC

anomalies south of 608S gradually weaken, while the

northward extension becomes stronger and stronger

(Fig. 8b). At a lag of 20 yr, a positive GMOC anomaly

emerges south of 608S. This positive GMOC anomaly

then intensifies and gradually spreads northward, which

in turn weakens the negative GMOC anomaly in the

north (Figs. 8c,d). At a lag of 40 yr, the AABW phase is

totally flipped and reaches its mature negative phase

(Fig. 8e). A close examination finds that the spatial

structure of quasi mature phase of AABW cell (Fig. 8a)

closely resembles the GMOC anomalies associated with

the APT1 (Fig. 5b). Similarly, the transition phase of

AABW cycle (Fig. 8c) matches with the GMOC

anomalies associated with the APT2 very well (Fig. 6b).

We show in Figs. 8f–j the multidecadal SST cycle as-

sociated with the deep convection. During the AABW

cell mature positive phase, the SO experiences broad

FIG. 5. Regression of normalized APT1 time series with (a) mixed layer depth (m; shading) and net heat flux

(contour interval is 1Wm22; black solid lines denote the atmosphere heating the ocean, while the gray dashed lines

denote the ocean losing heat to the atmosphere), (b) global meridional overturning circulation (GMOC; Sv; 1 Sv[
106m3 s21), (c) zonal mean (08–3608E) temperature (8C), and (d) sea ice concentration (100%) and surface wind

(m s21). Shown are only regions where the regression is significant at 95% confidence level.

6316 JOURNAL OF CL IMATE VOLUME 30



warming anomalies, with maximum values over the

Weddell Sea (Fig. 8f). The warm SST over the SO cor-

responds to a zonally oriented anticyclone wind, with

easterly anomalies around 408S and westerly anomalies

at 758S. We note that the mature phase of the SO SST

cycle here is in good agreement with the SST pattern in

APT1 (cf. Figs. 8f and 2a). Accompanied with the

AABW cell weakening south of 608S (Figs. 8a,b), the

positive SST anomalies over the Weddell Sea gradually

weaken (Figs. 8f,g). At the same time, the southeast

Pacific SST warming gradually spreads to the equator

through the fast positive wind–evaporation–SST (WES)

feedback and slow weakening of subtropical cell (e.g.,

Ma and Wu 2011) (Figs. 8f–h). The warm SST anomaly

over the tropical Pacific further induces a positive phase

of the Pacific–South American (PSA) teleconnection

(Mo and Higgins 1998). The PSA teleconnection cor-

responds to a wavenumber 3 in the midlatitudes with a

high geopotential height and an anticyclonic circula-

tion over the Amundsen–Bellingshausen Seas that fa-

vors warm poleward advection and thus warm SST

there (Fig. 8h). At a lag of 20 yr, a cooling SST

anomaly appears in the Weddell Sea (Fig. 8h) result-

ing from the emergence of a weak AABW cell shown

in Fig. 8c. The SST over the SO is characterized by a

dipole pattern at this moment, with a warm SST in the

Amundsen–Bellingshausen Seas and a cold SST in the

Weddell Sea. The negative SST anomaly in the Weddell

Sea further grows in theWeddell Sea and then extends to

the entire SO (Figs. 8h-j). Apparently, the SST anomalies

over the Amundsen–Bellingshausen Seas lag the SST

anomalies over the Weddell Sea due to slow advection

times. At lags of 40yr, the SO is almost covered by the

negative SST anomalies (Fig. 8j), which reach to the op-

posite phase of deep convection. We note again that the

transition phase of SO SST cycle matches very well with

the SST pattern in APT2 (cf. Figs. 8h and 3a). These SST

pattern similarities suggest that the leading two pre-

dictable components of SO SST originate from the

internal multidecadal cycle of SO deep convection.

The first component arises from the quasi-mature

phase of deep convection, while the second compo-

nent is contributed from the transition phase of deep

convection.

The associated sea ice and subsurface temperature

variabilities (Fig. 9) are physically consistent with our

previous analyses. The sea ice primarily follows the SST

changes, with a cold (warm) SST anomaly correspond-

ing to a sea ice increase (decrease). Thus, the mature

positive phase sea ice at lag 0 yr is characterized by a sea

ice decrease over the SO (Fig. 9a), whereas the transi-

tion phase sea ice at lag 25 yr exhibits a sea ice decrease

FIG. 6. As in Fig. 5, but for the normalized APT2 time series.
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in the Amundsen–Bellingshausen Seas and a sea ice

increase in the Weddell Sea (Fig. 9c). Figures 9f–j show

the multidecadal zonal mean temperature cycle. As

expected, the temperature response agrees with the

deep convection change (cf. Figs. 9f–j and 8a–e). The

spinup (spindown) of AABW cell brings subsurface

warm water to the surface, thereby leading to a warm

(cold) SST in the surface and a cold (warm) temperature

FIG. 7. Characteristics of internal deep convection over the SO in GFDL CM2.1 model. (a) Long-term mean

GMOC (Sv). Red (blue) color denotes clockwise (anticlockwise) cell. (b) Normalized time series of Antarctic

BottomWater (AABW) cell index, which is defined as theminimumvalue ofGMOCvalue south of 608S. (c) Power
spectrum of AABW cell index. (d) Lead–lag correlation between the AABW cell index and the most predictable

component of SO SST (APT1). Positive (negative) lags mean the AABW cell leads (lags) the APT1.
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in the subsurface. The dipole temperature weakens as

the AABW cell spins down and vice versa. Again, these

sea ice and zonal mean temperature anomalies in the

mature and transition phases match with the responses

in APT1 and APT2, respectively (cf. Figs. 9a,f and 5c,d;

cf. Figs. 9c,h and 6c,d).

We note that the most predictable SST (APT1) time

series over the SO lags the AABW cell index by about 5

years (Fig. 7d). The delayed SST response primarily

arises from the slow adjustment of the ocean that con-

sists of advection/wave propagation (Zhang and

Delworth 2016), which is also seen in the CM2.1 fully

coupled control run. Figure 10a exhibits the SO (508–
758S, 08–3608E) area averaged SST time series and the

Weddell Sea (758–558S, 528W–08E) area averaged SST

time series as well as the AABW cell index. Their lead–

lag correlations are shown in Fig. 10b. All three indices

have pronounced multidecadal fluctuations and they are

highly correlated. The AABW cell index is simulta-

neously correlated with the local (Weddell Sea) SST due

to strong deep convection there. In contrast, the maxi-

mum correlation between the AABW cell index and

FIG. 8. (a)–(e) Lagged regression of GMOC anomalies against the normalized AABW cell index in GFDL

CM2.1. (f)–(j)As in (a)–(e), but for the SST (shading), geopotential height at 500 hPa [contours; solid black (dashed

gray) contour indicates positive (negative) anomaly] and surface wind stress (vector). Units are Sv for GMOC, 8C
for SST, 0.5m for geopotential height contour interval, and Nm22 for wind stress. All data are 10-yr averaged

before regression. Shown are only regions where the regression is significant at 95% confidence level.
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remote SO SST occurs when the AABW cell leads by

about 5 years (Fig. 10b).

c. Mechanisms contributing to SO multidecadal
variability

The periodic strengthening and weakening of deep

convection caused by subsurface advection heating and

surface freshening results in model multidecadal oscil-

lation (Figs. 11 and 12). Thesemechanisms havemuch in

common with similar variability found in the Kiel Cli-

mate Model (Martin et al. 2013). Figure 11a shows the

time evolution of annual mean vertical temperature

anomaly averaged over the Weddell Sea. During active

convection (strong AABW cell anomaly in Fig. 11c), the

temperature distribution is almost homogeneous over

the entire water column, corresponding to weak column

stability, N2 (buoyancy frequency, ½2(g/r) (dr/dz)�;
Fig. 11d). During weak convection (weak AABW cell

anomaly in Fig. 11c), the ocean becomes static stable

with large values of N2. At this time, the heat tends to

accumulate at middepth, while the SST cools because

the surface water directly contacts with the atmosphere

and is strongly damped by the surface heat flux The

middepth heat spreads over time, warms the entire wa-

ter column below 300m (Fig. 11a), destabilizes the

ocean stratification from below (Fig. 11e), leads to a

FIG. 9. As in Fig. 8, but for (left) sea ice concentration (100%) and (right) zonal mean (08–3608E) temperature (8C)
at lag 0, 10, 20, 30, and 40 years.
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decrease of N2 (Fig. 11d), and eventually triggers the

occurrence of deep convection. The convection weak-

ening is preceded by subsurface heat depletion as well as

surface freshening (Figs. 11a,b). The stabilizing fresh-

water cap gets thicker and fresher as convection weakens.

The minimum surface salinity (Fig. 11b), and therefore

the strongest stabilizing effect (Fig. 11d), occurs just

slightly before the peak phase of weak convection. Ob-

viously, the increase of static stability N2 from strong

convection to weak convection comes from the salinity

contribution (Figs. 11d–f).

We now focus on what are the main processes re-

sponsible for subsurface warming and surface freshen-

ing. Figure 12a shows the temperature budget at 2000m

for the same period and region shown in Fig. 11a. It can

be seen that the buildup of heat in the subsurface is

mainly due to temperature advection. The diffusive

warming also contributes positively, but with a much

smaller magnitude. Further decomposition finds that the

advective warming is dominated by horizontal temper-

ature advection, while the vertical advection contributes

negligibly (Fig. 12b). The horizontal temperature ad-

vection is largely associated with the horizontalWeddell

Gyre. Before the weakening of deep convection, the

westward return flow in the southern branch of the

Weddell Gyre effectively drags midlatitude heat

(mainly the North Atlantic Deep Water) into the

Weddell Sea (Fig. 12c). This strong barotropic clockwise

gyre exists over almost the entire water column and its

strength is strongly associated with the deep convection

itself due to interactions between the AABW outflow

and topography (Zhang and Delworth 2016). The gyre

still exists when the convection spins down, albeit with a

weak amplitude (Fig. 12d). This guarantees a persistent

inverted temperature structure over the SO, which is

necessary but not sufficient for an oscillation.

Figures 12e and 12f show the surface salinity budget

over theWeddell Sea. Apparently, the surface freshening

FIG. 10. (a) Normalized time series of 10-yr averaged AABW cell strength and Weddell Sea

(WS; 758–558S, 528W–308E) and Southern Ocean (SO, 708–508S, 08–3608E) averaged SST

anomalies in the fully coupled GFDL CM2.1 control run. Unit is 1. (b) Lead–lag correlation

between theAABWand SST anomalies averaged over theWS/SO. The x axis denotes lead and

lag years.
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before the onset of weak convection is caused by sa-

linity advection and surface freshwater forcing as well

as diffusion (Fig. 12e). The contribution from diffusion

is relatively small compared to the other two factors.

Figure 12f further shows the salinity advection mainly

arises from horizontal advection. The Weddell Sea sur-

face is salty during active convection because of high-

salinity water from the subsurface. The salinity over

adjacent basins is relatively low, thus the horizontal sa-

linity advection from remote regions can induce fresh-

ening over the Weddell Sea. The positive contribution of

surface salt flux mainly comes from the sea ice melting in

response towarmSST during active convection (Fig. 12f).

In brief, the SOmultidecadal variability mainly a result

of halocline and inverted thermocline structure over the

subpolar region. Horizontal warm advection at depth due

to the Weddell Gyre warms up the subsurface water and

induces convection (red color in Fig. 13). Anomalous

freshwater advected from remote regions and sea ice

melting act as a fresh cap and thus weaken convection

(blue color in Fig. 13). The whole cycle repeats itself. The

time scale is determined by the rate of subsurface heating

and surface freshening. In the CM2.1 model, the recharge

and discharge processes of subsurface heat reservoir are

related to ocean advection, which are quite slow and thus

form low-frequency oscillation. Although the atmosphere

response can somehow change the amplitude of SST and

other related variables (e.g., Figs. 8f–j), it is not the main

driver and cannot determine the long time period.

5. Climate impacts

In this section, we examine the potential multiyear

predictability of surface air temperature (SAT) and

FIG. 11. Time evolution of annual mean (a) ocean temperature anomalies (8C) and (b) salinity (PSU) averaged

over the Weddell Sea (758–558S, 3008–3758E). The temperature/salinity anomaly is relative to a composite of 30

years of each of the twomajor convection periods (years 2950–80 and years 3020–50). (c) Time series of theAABW

cell anomaly (Sv) relative to long-term mean value. (d) Evolution of the static stability N2 (1026 s22), and its

contribution due to (e) temperature and (f) salinity. The dashed red (blue) lines overlapped in figure denote the

peak time of active (weak) convection.

6322 JOURNAL OF CL IMATE VOLUME 30



precipitation over the Antarctic continent. We find that

the multiyear predictability of land variables using the

land predictor itself is lower than the predictability using

global SST (not shown). This suggests that the land

predictability on interannual-to-decadal time scales is

primarily driven by SST (Hoerling and Kumar 2003;

Held et al. 2005). Thus, we use a generalized APT

method (GAPT) (Jia andDelSole 2011), which is similar

to the standard APT described in section 2, except that

the predictor and predictand are two different variables.

Here the predictor is global SST, while the predictand is

SAT or precipitation.

We show in Fig. 14 themost predictable component of

SAT over the Antarctic continent. The SAT physical

FIG. 12. (a) Heat budget at 2000m (1011W) averaged over theWeddell Sea (758–558S, 3008–3758E) over the same

time period shown in Fig. 12a. Red, blue, and green lines represent advection, diffusion, and convection, re-

spectively. (b) Temperature advection terms in three directions. Magenta, black, and yellow lines denote zonal,

meridional, and vertical temperature advection, respectively. Meridional profile of temperature anomalies (8C,
shading) and zonal current (contour interval: 10 cm s21, black: eastward current, gray: westward current) along the

168W section (c) before weakening of convection (averaged in years 2960–80) and (d) during weak convection

(averaged in years 2990–3100). (e) As in (a), but for the salinity budget (105 kg s21) at surface.Magenta line denotes

the surface salt flux forcing. (f) Salinity advection terms and surface salt flux forcing. Cyan, black, yellow, and purple

lines represent horizontal zonal and meridional advection, vertical advection, surface freshwater forcing due to sea

ice melting, and evaporation minus precipitation, respectively.

15 AUGUST 2017 ZHANG ET AL . 6323



pattern has a uniform warming over the entire Antarctic

land area, with maximum amplitudes over the Antarctic

Peninsula (Fig. 14a). The R2 values in the verification

data suggest that the Antarctic SAT is able to be pre-

dicted 6 years in advance (Fig. 14c). The SAT time series

has a pronounced 70–110-yr peak (Fig. 14b), implying a

potential linkage with the SO deep convection. The SST

regression pattern associated with the APT1 time series

shows notable SSTwarming over the SO, with negligible

signals over the Northern Hemisphere (Fig. 14d). The

maximum SST warming occurs over the Weddell Sea

where deep convection dominates. This SST pattern

highly resembles the mature phase SST associated with

the deep convection fluctuations (cf. Figs. 14d and 9a).

Thus, we conclude that the most predictable SAT over

the Antarctic continent results from the SO SST mem-

ory that is controlled by the deep convection activity.

Similar to the SAT, the most predictable component

of precipitation over the Antarctic continent primarily

arises from the prediction skill of SO SST that is closely

linked with SO deep convection. The physical pattern of

precipitation displays positive anomalies over land

where the adjacent SO has significant SST warming (cf.

Figs. 15a and 15d). The power spectrum of the GAPT1

time series, again, shows a similar frequency peak with

the SO SST andAABWcell (Fig. 15b vs Figs. 2c and 7d).

FIG. 13. Schematic picture showing the physical processes caus-

ing multidecadal variability over the Southern Ocean. Horizontal

advection at depth by theWeddell Gyre of relatively warmer water

from the midlatitudes to high latitudes destabilizes water column

and induces strong deep convection (red color). Anomalous

freshwater advected from remote regions and sea ice melting act as

a fresh cap and weaken convection (blue color). The whole cycle

repeats itself.

FIG. 14. The leading predictable component (GAPT1) of surface air temperature (SAT) over the Antarctic

continent. (a) Physical pattern (8C). (b) Power spectrum of normalized GAPT1 time series. (c) Squared multiple

correlation coefficients R2. (d) Regression of global SST against the normalized GAPT1 time series (8C).
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The R2 values of precipitation are lower than that of

SAT due to the noisy characteristics of precipitation (cf.

Figs. 14c and 15c). However, the potential predictability

of precipitation can still be up to 4 years (Fig. 15c).

6. Summary, discussion, and conclusions

By taking advantage of the GFDL CM2.1 4000-yr

control run integration, we investigate the potential de-

cadal predictability of SO SST in the present paper. We

use a new statistical optimization technique, called APT

analysis (DelSole and Tippett 2009a,b), to identify the

leading predictable components of SO SST on decadal

time scales. The APT analysis maximizes an integrated

prediction variance obtained from a linear regression

model, in which both the predictor and predictand are

SST. Note that the long-term control integration does not

include anthropogenic forcing or changes in natural

forcing from volcanoes or interannual variations of solar

irradiance. The potential predictability shown here is

therefore purely from internal variability.

The most predictable component of SO SST can be

predicted in an independent verification data by a linear

regression model, with significant skill up to 20 years.

The predictable pattern has a uniform SST sign over

the SO, with maximum values over the Amundsen–

Bellingshausen–Weddell Seas. The associated APT

time series has a 70–120-yr spectral peak. This predict-

able pattern is closely related to the mature phase of the

SO internal variability that originates from deep con-

vection fluctuations. In the CM2.1 model, deep con-

vection mainly occurs over the Weddell Sea and has

multidecadal fluctuations on a 70–120-yr time scale. This

multidecadal time scale selection is largely associated

with the recharge processes of heat reservoir in the deep

ocean. Slow subsurface ocean processes provide long

time scales that give rise to decadal predictability of SO

SST. The SO SST has significant climate impacts on the

SAT and precipitation over theAntarctic continent. The

SAT and precipitation can be potentially predictable up

to 6 yr and 4 yr in advance, respectively. These multiyear

prediction skills arise from the SO SST, which is again

FIG. 15. As in Fig. 14, but for the precipitation (mmday21) over the Antarctic continent.
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attributed to the internal deep convection fluctuations

over the Weddell Sea.

The second most predictable component of SO SST is

characterized by a dipole structure, with SST anomalies

of one sign over the Weddell Sea and SST anomalies of

the opposite sign over the Amundsen–Bellingshausen

Seas. This component has statistically significant pre-

diction skill for 6 years based on a linear regression

model. A close examination reveals that this dipole

mode primarily arises from the transition phase of the

dominant pattern of SO internal variability. Again, the

slow ocean memory associated with the SO deep

FIG. 16. The APT decomposition of SO SST in the CM3 model. Spatial patterns of the (a) most (APT1) and

(b) second most (APT2) predictable components. (c) Power spectrum of APT1 and APT2 time series. Red (blue)

dashed line denotes the 90% significance level for theAPT1 (APT2) spectrum. (d),(e) Squaredmultiple correlation

coefficients R2 and squared persistence for the APT1 and APT2 components, respectively. The dashed black line

denotes the 95% significance level. (f) Lead–lag correlation between the AABW cell index and theAPT1 time

series. Positive (negative) lags mean the AABW cell leads (lags) the APT1. The yellow points imposed on the bars

indicate that the correlation is significant at 95% level.
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convection provides themultiyear prediction skill of this

second most predictable component. Interestingly, this

second component corresponds to a sea ice dipole

structure over the Amundsen–Bellingshausen–Weddell

Seas, which somewhat resembles the observed sea ice

trend in recent years (e.g., Li et al. 2014). The associated

surface wind over the SO characterized by a cyclone (or

anticyclone) around 1608–408W favors sea ice dipole

formation, which is also consistent with what was found

in observation. These similarities provide a hypothesis

that some prominent trends observed during the recent

decades in the Southern Hemisphere may have some

contributions from internal variability in the SO that is

strongly associated with deep convection fluctuations.

To provide some perspective on the robustness of our

results, we perform the same APT diagnostics on a long

control integration of a different GFDL climate model,

CM3 (Donner et al. 2011). The CM3model has an ocean

component that is quite similar to CM2.1, but the

atmospheric component of CM3 has substantial

differences from CM2.1. Similar to CM2.1, the most

predictable SST pattern in CM3 displays a uniform sign

over the SO, while the second most predictable SST

pattern shows a dipole structure (Figs. 16a,b). The

maximum SST centers associated with these two modes

are primarily over the continental shelf regions of the

Weddell and Ross Seas (Figs. 16a,b), which are some-

what different from CM2.1 (Figs. 2 and 3). These SST

center differences are largely associated with the deep

convection position in the two models (not shown). The

SO deep convection mainly occurs in theWeddell Sea in

the CM2.1 model, including both over the open ocean

and the continental shelf. In contrast, the deep convec-

tion in CM3 model takes places in continental shelf re-

gions of the Weddell and Ross Seas.

The power spectrum ofAPT1 andAPT2 time series in

CM3model shows prominent spectral peaks around 300

years, which are longer than that in CM2.1 model

(Fig. 16c vs Figs. 2c and 3c). This leads to a long per-

sistence time of SST and therefore a long predictability

skill, as presented in Figs. 16d and 16e. The predictive

skill can be up to 30 years for APT1 component and 10

years for APT2 mode. In agreement with that in the

CM2.1model, these leading predictable components are

found to be closely linked with the SO deep convection

fluctuations (Fig. 16f). The period difference in these

two models seems to arise from differences in the

warming rate in the subsurface (not shown) that are

related to the Weddell Gyre strength and warming

magnitude at depth in the midlatitude. We will examine

this issue further in future work.

Our diagnostic approach for the decadal predictability

of SO SST in the current paper suggests that if we could

correctly initialize the SO deep convection in the nu-

merical forecast model, the future evolution of SO SST

and its associated climate impacts might be predictable

on decadal scales. Such predictions would ideally be

performed using models with simulations of the SO that

are as realistic as possible. In addition, enhanced ocean

observations, particularly subsurface observations over

the far SO, are also needed to characterize the state of

the SO. An important caveat is that the realism of

model’s simulation of the SO will impact how relevant

such potential predictive skill is for predictions of the

real climate system. The decadal prediction skill of SO

SST based on real decadal hindcasts/forecasts is cur-

rently under investigation and will be the topic of a

forthcoming paper (Zhang et al. 2017a).
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